Louisiana's Cyberinfrastructure to Support Higher Education Research & Education

Joel E. Tohline

Chair, LONI Management Council

Director, LSU Center for Computation & Technology

8 October 2013

Louisiana's CyberInfrastructure (status in October, 2013)

Louisiana's CyberInfrastructure (status in October, 2013)

- ✓ LONI (Louisiana Optical Network Initiative): Higher education's 2004-2014 state-funded 40-Gbps optical network
- ✓ Xavier: \$1.2M in 2010 NSF/RII-C2 funding; 10-Gbps connectivity into Xavier University
- ✓ CADIS: \$0.5M in 2012 NSF/CC-NIE funding; provides 100-Gbps connectivity between HPC systems and new DMC building
- ✓ Big Data: \$0.95M in 2013 NSF/CC-NIE funding; modest-scale, distributed GENI-rack environment
- ✓ LONI Science DMZ implementation

Louisiana's CyberInfrastructure (status in October 2013)

Compute Cycles

- ✓ SuperMike-II: \$2.6M in LSU funding; installed in fall 2012
- ✓ Shelob: \$0.54M in 2012 NSF/CNS funding; a GPU-loaded, heterogeneous, computing platform
- ✓ Melete: \$0.9M in NSF/CNS/MRI funding; an interaction-oriented, software-rich cluster w/ tangible interface support
- ✓ SuperMIC: \$4M in 2013
 NSF/ACI/MRI funding; 1 Pflops
 system shared with national XSEDE community
- ✓ Commitment of funding from Board of Regents to replace the flagship HPC system (Queen Bee) of LONI

Louisiana's High-Performance Computing (HPC) Systems

Linux Clusters

- LSU's HPC
 - SuperMIC (1050 TF)

NEW! Acquisition in progress

- SuperMike-II (220 TF)
- Shelob (95 TF)
- Tezpur (15.3 TF)
- Philip (3.5 TF)
- LONI
 - Queen Bee (50.7 TF)
 - Five (@ 4.8 TF)

AIX Clusters

- LSU's HPC
 - Pandora (IBM P7; 6.8 TF)
 - Pelican (IBM P5+;1.9 TF)Decommissioned
- LONI
 - Five (IBM P5; @ 0.85 TF)Decommissioned

Linux Clusters

- LSU's HPC
 - SuperMIC (1050 TF)

NEW! Acquisition in progress

- SuperMike-II (220 TF)
- Shelob (95 TF)
- Tezpur (15.3 TF)
- Philip (3.5 TF)
- LONI
 - Queen Bee (50.7 TF)
 - Five (@ 4.8 TF)

Linux Clusters

- LSU's HPC
 - SuperMIC (1050 TF)

NEW! Acquisition in progress

- SuperMike-II (220 TF)
- Shelob (95 TF)
- Tezpur (15.3 TF)
- Philip (3.5 TF)
- LON
 - Queen Bee (50.7 TF)
 - Five (@ 4.8 TF)

LONI's High-Performance Computing Grid

Originally, 6 clusters, located at six different campuses

LONI Dell Linux Clusters

- Queen Bee: 50 TFlops centerpiece
 - 23rd on the June 2007 Top 500 list
 - Hosted at the state's Information Systems Building
 - 668 nodes with 8 Intel Xeons cores @ 2.33 GHz, 8 GB RAM (i.e., 5344 cores)
 - 192TB DDN storage running Lustre

• Five 5 TFlops clusters

- Online: Eric(LSU), Oliver(ULL), Louie(Tulane),
 Poseidon(UNO), Painter (LaTech)
- 128 nodes with 4 Intel Xeons cores@ 2.33 Ghz, 4 GB
 RAM
- 9TB DDN storage running Lustre each

LONI Dell Linux Clusters

Queen Bee: 50 TFlops centerpiece

- 23rd on the June 2007 Top 500 list
- Hosted at the state's Information Systems Building
- 668 nodes with 8 Intel Xeons cores @ 2.33 GHz, 8 GB RAM (i.e., 5344 cores)
- 192TB DDN storage running Lustre

• Five 5 TFlops clusters

- Online: Eric(LSU), Oliver(ULL), Louie(Tulane),
 Poseidon(UNO), Painter (LaTech)
- 128 nodes with 4 Intel Xeons cores@ 2.33 Ghz, 4 GB RAM
- 9TB DDN storage running Lustre each

Linux Clusters

- LSU's HPC
 - SuperMIC (1050 TF)

NEW! Acquisition in progress

- SuperMike-II (220 TF)
- Shelob (95 TF)
- Tezpur (15.3 TF)
- Philip (3.5 TF)
- LONI
 - Queen Bee (50.7 TF)
 - Five (@ 4.8 TF)

Linux Clusters

- LSU's HPC
 - SuperMIC (1050 TF)

NEW! Acquisition in progress

- SuperMike-II (220 TF)
- Shelob (95 TF)
- Tezpur (15.3 TF)
- Philip (3.5 TF)
- LONI
 - Queen Bee (50.7 TF)
 - Five (@ 4.8 TF)

LSU's Linux HPC Systems

- SuperMike-II (mike.hpc.lsu.edu)
 - 380 compute nodes: 16 Intel Sandy Bridge cores @ 2.6GHz, 32GB RAM, 500GB HD, 40Gb/s infiniband, 2x 1Gb/s Ethernet
 - 52 GPU compute nodes: 16 Intel Sandy Bridge cores @ 2.6GHz, 2
 NVIDIA M2090 GPUs, 64GB RAM, 500GB HD, 40Gb/s
 infiniband, 2x 1Gb/s Ethernet
 - 8 fat compute nodes: 16 Intel Sandy Bridge cores @ 2.6GHz, 256
 GB RAM, 500GB HD, 40Gb/s infiniband, 2x 1Gb/s Ethernet,
 Aggregated together by ScaleMP to one big SMP node
 - 3 head nodes: 16 Intel Sandy Bridge cores @ 2.6GHz, 64 GB
 RAM, 2 x 500GB HD, 40Gb/s infiniband, 2x 10Gb/s
 - 1500TB (scratch + long term) DDN Luster storage

LSU's Linux HPC Systems

- SuperMIC (mic.hpc.lsu.edu) Acquisition in progress!
 - The largest NSF MRI award LSU has ever received (\$3,924,181 with \$1,681,792 LSU match)
 - 360 compute nodes: 20 Intel Ivy Bridge cores @ 2.8GHz, 2 Intel Xeon Phi with 61 cores @ 1.2 GHz, 64GB RAM, 500GB HD, 56Gb/s infiniband, 2x 1Gb/s Ethernet
 - 20 hybrid compute nodes: 20 Intel Ivy Bridge cores @ 2.8GHz,
 1 Intel Xeon Phi with 61 cores @ 1.2 GHz, 1 NVIDIA K20X
 GPU @1.3 TF, 64GB RAM, 500GB HD, 56Gb/s infiniband, 2x
 1Gb/s Ethernet
 - 1 Phi head node: 20 Intel Ivy Bridge cores @ 2.8GHz, 2 Intel
 Xeon Phi with 61 cores @ 1.2 GHz, 128 GB RAM, 2x 1TB HD,
 56Gb/s infiniband, 2x 10Gb/s Ethernet
 - 1 GPU head node: 20 Intel Ivy Bridge cores @ 2.8GHz, 2
 NVIDIA K20X GPU @1.3 TF, 128 GB RAM, 2x 1TB HD, 56Gb/s infiniband, 2x 10Gb/s Ethernet
 - 1000TB (scratch) DDN Luster storage

Queen Bee Replacement

- Expect a ~1.5-2 Pflops system
- Funded by Board of Regents via LONI
- Work with vendors and researchers to configure and design the system
- We expect to acquire and install the machine this fiscal year

What System Architecture Should We Pursue?

National HPC Resources

NSF XSEDE

- Intel- or AMD-based commodity cluster
 - Tightly coupled (Kraken, Lonestar4, Gorden, Trestles, etc.)
 - Loosely coupled (Condor pool from the Open Science Grid)
- SGI Altix SMP (Blacklight)
- Xeon Phi acceleration (Stampede, SuperMIC)
- NVIDIA GPU acceleration (Keeneland, Nautilus, etc.)
- **NSF Blue Waters** (Cray installation w/ NVIDIA GPU acceleration)
- DOE INCITE
 - Cray XT5 AMD-based with NVIDIA GPU (Titan)
 - IBM Blue Gene/Q (Mira)

Scenario #1

2x of SuperMIC: 720 Intel Ivy Bridge 10-core 2.8GHz or 12-core 2.4 GHz + Intel Xeon Phi 7120P @1.2 TF) nodes, 40 GPU or (GPU + Phi) nodes, 2 PFlops, \$10M

Scenario #2

 Homogeneous CPU cluster: Intel Ivy Bridage 10-core 2.8GHz or 12-core 2.4 GHz, 1800 nodes (36000 or 43200 cores), 800 TFlops, \$10M

Scenario #3

- Cray cluster (\$15-25M guess):
 - XC-30 CASCADE cluster: 4 Pflops, 2,264 nodes
 (1 10-core 2.5GHz Ivy Bridge + 1 Xeon Phi
 5120P @1.1 TF), 32 GB memory per node
 - 8 fat nodes: 4 10-core Ivy Bridge, 1.5 TB memory
 - 32 visualization nodes: 2 10-core Ivy Bridge, 2
 NVIDIA K20s, 2 Xeon Phi, 256 GB memory

Scenario #4 (distributed system)

- · Each campus will have a cluster consisting of
 - Compute rack (20 nodes)
 - · Each node has 1TB SSD, 2 CPU (8 cores), 128GB Memory
 - Storage rack
 - 1PB, Lustre file system storage servers
 - 10Gbps Openflow switch network
 - · Transferring data between storage and compute racks
 - Transferring data between clusters over LONI
- Multiple clusters will be federated with GENI technology
 - Cloud computing
 - Openflow
- Application
 - Each research group stores
 big data at a local storage rack and
 process big data at a local compute rack
 - The stored big data can be transferred to other clusters through LONI efficiently
 - If large-scale resource is required, users can make a virtual slice federating multiple clusters over LONI

How Important Is ...

- High bandwidth interconnectivity of compute nodes?
- Accelerator hardware?
- Memory per core?
- Disk storage relative to DRAM?
- SSDs versus spinning disks?
- Distributed computing?
- Distributed storage?
- Other?

Discuss!

Queen Bee Replacement

(discussion 10/7/2013)

- \$6.75 M computing hardware + \$1.25 M infrastructure (including storage)
- Architecture very similar to SuperMIC, but 50% larger → 1.5
 Pflops (i.e., approx. 570 nodes)
 - 555 nodes, 2 Xeon-phi (8 Gbytes/card)
 - 15 FAT nodes (256 Gbytes/node), 2 NVIDIA (6 Gbytes/card)
 - 64 Gbytes/20 core
 - SSDs???

Queen Bee Replacement

(discussion 10/7/2013)

- \$7.88 M computing hardware + infrastructure via other sources
- Architecture very similar to SuperMIC, but 75% larger → 1.75
 Pflops (i.e., approx. 665 nodes)
 - 645 nodes, 2 Xeon-phi
 - 20 FAT (256 Gbytes/node), 2 NVIDIA
 - 64 Gbytes/20 core
 - SSDs???

LONI "Science DMZ"

Now, let's talk about data storage and management ...

30

How does a university's strategy for handling the storage and curation of digital data relate to NSF's "Data Management" mandate?

Data Storage & Curation

How does a university's strategy for handling the storage and curation of digital data relate to NSF's "Data Management" mandate?

NSF Data Management Plans may include (taken from the NSF Grant Proposal Guide):

- Types of data, samples, physical collections, software, curriculum materials, and other materials to be produced in the course of the project;
- Standards to be used for data and metadata format and content (where existing standards are absent or deemed inadequate, this should be documented along with any proposed solutions or remedies);
- Policies for access and sharing including provisions for appropriate protection of privacy, confidentiality, security, intellectual property, or other rights or requirements;
- Policies and provisions for re-use, re-distribution, and the production of derivatives;
- Plans for archiving data, samples, and other research products, and for preservation of access to them.

Data Storage & Curation

How does a university's strategy for handling the storage and curation of digital data relate to NSF's "Data Management" mandate?

NSF Data Management Plans may include (taken from the NSF Grant Proposal Guide):

- Types of data, samples, physical collections, software, curriculum materials, and other materials to be produced in the course of the project;
- Standards to be used for data and metadata format and content (where existing standards are absent or deemed inadequate, this should be documented along with any proposed solutions or remedies);
- Policies for access and sharing including provisions for appropriate protection of privacy, confidentiality, security, intellectual property, or other rights or requirements;
- Policies and provisions for re-use, re-distribution, and the production of derivatives;
- Plans for archiving data, samples, and other research products, and for preservation of access to them.

How does a university's strategy for handling the storage and curation of digital data relate to NSF's "Data Management" mandate?

NSF Data Management Plans may include (taken from the NSF Grant Proposal Guide):

- Types of data, samples, physical collections, software, curriculum materials, and other materials to be produced in the course of the project;
- Standards to be used for data and metadata format and content (where existing standards are absent or deemed inadequate, this should be documented along with any proposed solutions or remedies);
- Policies for access and sharing including provisions for appropriate protection of privacy, confidentiality, security, intellectual property, or other rights or requirements;
- Policies and provisions for re-use, re-distribution, and the production of derivatives;
- Plans for archiving data, samples, and other research products, and for preservation of access to them.

Data Storage & Curation

LSU's CyberInfrastructure (status in early 2013)

- ❖ We've been discussing a 3-tiered approach to storage where a limited amount of space is associated with each storage tier.
 - ❖ Tier 1: Disk storage with fast read/write access to support high-performance computing (HPC) activities; this is not intended to serve as long-term, archival storage.
 - ❖ Tier 2: Easy to use/access disk storage available to all faculty research projects; university ensures long-term viability (permanency?) of this data; a rich software interface supports data management and curation.
 - ❖ Tier 3: Very inexpensive (and, likely, very slow access) long-term storage; may be viewed as extension of tier-1 and tier-2, but without rich curation features.

Tier 1 [HPC users]

Default: 20 Tbytes/group (at no direct cost)

Expandable @ a cost of \$125/TeraByte/year

Tier 2 [1000 Faculty]

Default: 100 Gbytes/faculty (at no direct cost)

Mac

Expandable @ a cost of \$0.07/Gbyte/month = \$840/TeraByte/year

Tier 3 [1000 Faculty]

Default: 250 Gbytes/faculty (at no direct cost)

Expandable @ a cost of \$0.06/Gbyte/month = \$720/TeraByte/year

Curation Layer

- Only provided with Tier 2a (or only Tier 2b?) or w/ Tier 3 also.
- Initial curation layer will be BE Press (?), managed by LSU Library faculty/staff
 - Server managed by library staff
 - Each entry will point back to file stored on LSU's Tier 2a system; this will avoid the need to purchase/maintain double the storage
- Long term curation solution?

Storage Options (2011)

- 200TB DataDirect Network (DDN) high performance storage running Lustre with IB connection at \$300-320K
 - Roughly \$1.5-1.6K/TB
- 200TB Panasas high performance storage with IB connection at \$320-340K
 - Roughly \$1.6-1.7K/TB
- 200TB Fusion Manager File system with IB connection at \$500-600K
 - Roughly \$2.5-3K/TB
- 192TB IBM GPFS storage with IB connection at \$150-200K
 - Roughly \$0.78-1.04K/TB

