

IPv6 on Linux servers

Dan Pritts
16 August 2013

Why IPv6?

• 7 Billion people

4 Billion IPv4 addresses (2³²)

• 340,282,366,920,938,000,000,000,000,000,000,000 IPv6 addresses (2¹²⁸)

IPv4 Address Depletion

http://www.potaroo.net/tools/ipv4/index.html

So What?

- NAT is horrendous
- Multi-layer NAT makes regular NAT look good
- "Polluted" address space (1.1.1.1?)
- Even if we at UM do not run out of addresses, much of the rest of the world will, and we need to talk to them.
- Microsoft paid \$11.25/address in 2011

The network is changing

• Our choice is *not* whether we stick with the tried and true, or we migrate to IPv6.

Let's Dive In

```
eth0 Link encap:Ethernet HWaddr 52:54:00:F1:A7:B9
     inet addr:141.211.255.68 Bcast:141.211.255.71
             Mask: 255, 255, 255, 248
     inet6 addr: 2607:f018:704:ffff:5054:ff:fef1:a7b9/64
             Scope:Global
     inet6 addr: fe80::5054:ff:fef1:a7b9/64 Scope:Link
     inet6 addr: 2607:f018:704:ffff::68/64 Scope:Global
     UP BROADCAST RUNNING MULTICAST MTU: 1500 Metric: 1
     RX packets:45374 errors:0 dropped:0 overruns:0 frame:0
     TX packets:14725 errors:0 dropped:0 overruns:0 carrier:0
     collisions:0 txqueuelen:1000
     RX bytes:12914756 (12.3 MiB) TX bytes:1799962 (1.7 MiB)
```


IPv4 address structure - 32 bits

An IPv4 address (dotted-decimal notation)

IPv6 Address structure – 128 bits

An IPv6 address

(in hexadecimal)

2001:0DB8:AC10:FE01:0000:0000:0000:0000

Zeroes can be omitted

2001:0DB8:AC10:FE01::

Real World Example

- 2607:f018:0704:ffff:0000:0000:0000:0068/64
- 2607:f018:704:ffff::68/64

What's the /64?

- This is the subnet mask; it shows the number of address bits used for the local LAN vs. the rest of the Internet.
- Just like in IPv4
- 10.224.146.1/255.255.255.0
 10.224.146.1/24
- 141.211.255.68/255.255.255.248141.211.255.68/29

Static Addressing

Some things don't change much

inet6 addr: 2607:f018:704:ffff::68/64 Scope:Global

What about the broadcast?

- There isn't one.
- Functions formerly done via broadcast are done via (more targeted) multicasts.
- You don't have to configure broadcast or multicast addresses on interfaces.
- It's an anachronism on IPv4 anyway. I've never used an IPv4 network where it couldn't be computed from the address and netmask.

Link-local address

- Used for various low-level purposes
- Never routed off your subnet
- If everything is working you don't need to worry about this

inet6 addr: fe80::5054:ff:fef1:a7b9/64 Scope:Link

2 Ways of Automatic Addressing

- DHCPv6
 - Much like the DHCP you are used to, but not supported on all OSes
- Stateless address autoconfiguration (SLAAC)
 - Lighter-weight; runs on routers, arguably lower security
 - Combination of router discovery and node auto-addressing (EUI-64 or privacy)

EUI-64 addressing

- My ethernet address is 52:54:00:F1:A7:B9
- 2607:f018:704:ffff:5054:ff:fef1:a7b9/64
- 2607:f018:704:ffff:5054:00ff:fef1:a7b9/64
- Flip the seventh bit of the first byte: 52->50 (local vs. global)
- 2607:f018:704:ffff:5054:00ff:fef1:a7b9/64

Privacy Addresses

- Use a random 64-bit number
- Rotate periodically
- Privacy win; manageability lose
- On by default in windows client OSes

New messages in ICMPv6

- Router Solicitation/Advertisement (DHCP,RIP)
- ND Neighbor Solicitation (ARP)
- MLD Multicast listener discovery (was IGMP)

Transition Strategies

- Dual Stack
 - Do both in parallel
 - Presumably what we will use at UM
- Backward Compatibility for IPv6-only networks
 - NAT64/DNS64

Tunneling & transition mechanisms

- There are various tunneling options for IPv4 users to get to the IPv6 internet. Don't, except maybe to experiment.
 - Teredo, 6to4, 6rd, ISATAP
 - Large v6 servers might want to install 6to4 and Teredo gateways
- Happy Eyeballs
 - Apps and OS will prefer IPv6 if it exists.
 - User may have good IPv4 but broken IPv6 connectivity.

You said this talk would be about servers.

IP addressing on Red Hat & derivatives

- /etc/sysconfig/network NETWORKING_IPV6=true
- /etc/sysconfig/network-scripts/ifcfg-eth0

```
IPV6INIT=yes
IPV6ADDR=2607:f018:704:ffff::68
# UMNet says to accept router announcements
# this is how to do static
IPV6_DEFAULTGW=2607:f018:704:ffff::2
IPV6PREFIX=64
IPV6_AUTOCONF=no #EL6 bug?
```


IP addressing on Debian/Ubuntu

```
# The primary network interface
auto eth0
iface eth0 inet static
address 141.211.255.70
broadcast 141.211.255.71
netmask 255.255.248.0
gateway 141.211.255.65
iface eth0 inet6 static
address 2607:f018:704:ffff::70
netmask 64
# UMNet says to accept router announcements
# this is how to do static
gateway 2607:f018:704:ffff::2
```


Checking address, listeners, stats, routing

- ifconfig
- netstat -a [-A inet6]
- netstat -r -A inet6
 - ip route command for IPv6?
- ip neighbor
 - standalone command like arp for ND?

Network toolkit

- Pretty robust; most open source in good shape
- ping6
- traceroute6
- mtr -6
- nmap -6
- socat

Security

Security

- Most things are similar; most of the same problems exist in v6 as v4.
- But tools are not always up to par (e.g., VFW)
- Feature Parity, or Feature Parody?

ip6tables

Very similar to iptables

Too many addresses

- A /64 has way, way too many addresses to try to scan the whole thing
- IP-address based blacklisting (e.g., for spam)
 will not necessarily scale
- Wildcard reverse DNS (not)

Private IP addresses?

- There is no "private" IPv6 address space (like 10.0.0.0 or 192.168.0.0)*
- If you have business processes that use this space, think about how to transition
- OTOH IPv4 is not going away anytime soon

* "site-local" is defined, but is deprecated by RFC 3879

Applications

Apache httpd

 If you don't configure up specific IP addresses, it Just Works

Listen 80

 If you do configure up specific IPs, it's still pretty easy.

<VirtualHost 141.211.255.68:443
[2607:f018:704:ffff::68]:443>

Apache httpd

• Did you remember to open up port 80 in ip6tables?

Again, pretty simple

```
listen-on-v6 port 53 { 2607:f018:704:ffff::68; };
```


- IPv6 info in the DNS
 - AAAA records instead of A records
 - ip6.arpa instead of in-addr.arpa.net

V6test0 A 141.211.255.68

V6test0 AAAA 2607:F018:704:ffff::68

Nibble format for reverse lookups (ugh)

% host www.internet2.edu

webprod0.internet2.edu has IPv6 address 2001:48a8:68fe::151

% host 2001:48a8:68fe::151

1.5.1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.e.f.8.6.8.a.8.4.1.0.0.2.ip6.arpa domain name pointer www.internet2.edu.

2001:48a8:68fe:0000:0000:0000:0000:0151

Read it backwards...

```
1.5.1.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.0 . 0.0.
```


- Q: How do I pre-fill an end-user subnet with reverse lookups?
- A: You don't.
- How about just a dynamic answer? Code contributions welcome.
- Dynamic DNS (yuck)
- Stop requiring that clients have working reverse lookups.

• Did you remember to open up port 53 in ip6tables?

Others

- In general, bare IPv6 addresses OR addresses in brackets are accepted by most software.
- If it already uses :portnumber, try brackets.

The whole stack has to work Case study: Internet2 video streaming

- End-user computer & campus network: check.
- WAN: check.
- Internet2 server LAN, DNS, etc: check.
- Internet2 web server OS & httpd: check.
- Internet2 video streaming server: check.
- Internet2's video player applet? BZZZZ!

Further reading

- Wikipedia articles are quite good
- http://www.hpc.mil/cms2/index.php/ipv6knowledge-base-deployment/152-v6-trainingand-learning

Thanks!

danno@umich.edu

734-615-1517

http://www-personal.umich.edu/~danno/slides/20130816/